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Given a social graph, the problem of influence maximization is to determine a set of nodes that maximizes
the spread of influences. While some recent research has studied the problem of influence maximization,
these works are generally too time consuming for practical use in a large-scale social network. In this arti-
cle, we develop a new framework, community-based influence maximization (CIM), to tackle the influence
maximization problem with an emphasis on the time efficiency issue. Our proposed framework, CIM, com-
prises three phases: (i) community detection, (ii) candidate generation, and (iii) seed selection. Specifically,
phase (i) discovers the community structure of the network; phase (ii) uses the information of communities
to narrow down the possible seed candidates; and phase (iii) finalizes the seed nodes from the candidate
set. By exploiting the properties of the community structures, we are able to avoid overlapped information
and thus efficiently select the number of seeds to maximize information spreads. The experimental results
on both synthetic and real datasets show that the proposed CIM algorithm significantly outperforms the
state-of-the-art algorithms in terms of efficiency and scalability, with almost no compromise of effectiveness.
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1. INTRODUCTION

Owing to the advances in Web 2.0 technologies and ideas, various online social network-
ing services have emerged. They allow users to establish social connections (i.e., friend-
ship) and facilitate interactions and share thoughts, comments, pictures, etc., among
friends. The friendship among users naturally forms a social network, which becomes
a valuable marketing media, as the size of user bases in social networking services
rapidly grows over the years. As a result, many companies have increasingly chosen
online social networks over other media (such as newspaper and television) for market-
ing campaigns. According to a report from eMarketer (http://www.emarketer.com/),
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Fig. 1. An illustration of the enhanced greedy algorithm for the influence maximization problem.

advertisement spending on worldwide social network sites has obtained a steady
double-digit growth for the past several years.

Finding influential individuals is one of the most critical issues for marketing on
social-networking media. For example, to plan for a marketing campaign of a new
product via social-networking media, a company may want to target a small number
of users (referred to as seeds) for a trial of the product, hoping that these users could
influence their friends, who may in turn influence their friends, to buy the product
(or become familiar with it). The idea is that through the effect of word-of-mouth, the
company could reach a large number of potential customers. This scenario is thus
formally defined as the influence maximization problem [Domingos and Richaidson
2001], which aims to select the initial seeds who may influence a maximal number of
users to adopt a marketed product.1

A considerable amount of research effort has been put forth on the influence maxi-
mization problem [10, 12, 23, 29]. Kempe et al.’s seminal work [2003] proves that the in-
fluence maximization problem is NP-hard and proposes Monte Carlo simulation-based
algorithms to solve the problem. Nevertheless, as social networks become gigantic, the
efficiency of mining algorithms for influence maximization becomes very critical (e.g.,
the timeliness required for a product campaign may be lost if it takes weeks to select a
set of seeds for promotion of the products). Although some approximate algorithms (e.g.,
[Chen et al. 2009; Estevez et al. 2007]) have been proposed to address the efficiency
issue, these works are mostly dependent on diffusion models that do not capture the
temporal factor of diffusion (such as linear threshold model or independent propaga-
tion model [Estevez et al. 2007; Goldenberg et al. 2001; Valente 1995; Young 2000]). It
is quite important to capture the temporal process of information diffusion for realistic
market planning, for example, some marketing campaigns may want to time the chain
effect of product adoption in three days, a week, or a month. Thus, in this article, we
adopt the Heat Diffusion Model (HDM) [Ma et al. 2008] due to its strength in capturing
the temporal diffusion process.

The influence maximization problem based on HDM is also NP-hard [Ma et al.
2008]. While a heuristic algorithm, called enhanced greedy algorithm (EGA) [Ma et al.
2008], has been proposed to select influential nodes greedily, it still incurs excessive
computation. Basically, EGA iteratively selects a node as a seed until k seeds are
obtained. At each iteration, it will combine each non-seed node, one by one, with the seed
nodes selected from previous iterations to compute their combined influence spreads.
The node introducing the most influence spread to the existing seeds is selected as a
new seed. Consider the example social network in Figure 1. Suppose that node 3 has
been selected as a seed in the first iteration. To find the next seed, EGA computes the
influence spreads of (3, 1), (3, 2), (3, 4), . . . , (3, 17) and eventually selects node 13 as

1Note that the number of those influenced users is referred to as influence spread in the literature.
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Fig. 2. Overview of the CIM framework approach.

the next seed, because it results in the most increase in influence spread. Next, to find
the third seed, EGA continues the aforementioned process to compute influence spread
for (3, 13, 1), (3, 13, 2), (3, 13, 4), . . . , (3, 13, 12), (3, 13, 14), . . . (3, 13, 17). Obviously,
this greedy method is very time consuming. Based on our observation, computation
of influence spread associated with some non-seed nodes is unnecessary in the second
iteration. As shown in Figure 1, suppose node 3 has been selected as a seed; nodes 1, 2,
4, 5, 6, 7, and 8 actually share many common neighbor nodes with node 3. If we choose
one of them as a seed, the information will only spread among those common neighbor
nodes. On the other hand, if we select node 13 as an additional seed, the increase of
spread is more significant. Hence, if we can identify nodes that share a lot of common
neighbors, we may be able to save significant computational overhead. Notice that the
nodes that share a lot of common neighbors are known as a community structure in the
literature of social network analysis and data mining. Thus, we argue, by exploring
the community structures naturally embedded in a social network, efficient algorithms
can be developed to address the influence maximization problem.

In this article, we develop a new framework, namely, community-based influence
maximization (CIM), to tackle the problem of the influence maximization problem,
with an emphasis on the time efficiency issue.2 Figure 2 provides an overview of our
approach in CIM, which comprises three phases: (i) community detection, (ii) candi-
date generation, and (iii) seed selection. Specifically, phase (i) discovers the community
structure of the network; phase (ii) uses the information of communities to narrow
down the possible seed candidates; and phase (iii) finalizes the seed nodes from the
candidate set. Several issues arise in CIM. (1) As already mentioned, community struc-
ture provides a means to identify nodes with overlapping influence spreads and thus
reduces redundant computation of influence spreads. Does any community obtained by
an arbitrary clustering algorithm work well in CIM? How shall we design a clustering
algorithm to find “good” clusters? Most clustering algorithms typically come with a

2Preliminary result of this work has been reported in SNAKDD’12 [Chen et al. 2012].
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number of parameters which are hard for users to tune. Could we minimize the param-
eter setting? (2) As social networks in realistic settings are extremely large, the search
space of selecting seeds is also huge. Effectively reducing the number of candidate
seeds is a critical issue of influence maximization. How to narrow down the size of a
candidate set of seeds is a core issue in CIM. (3) The computation of influence spreads
is most time consuming. Thus, how to reduce the overhead incurred for following the
diffusion model is a major bottleneck and thus critical to CIM.

The contributions of this article are as follows.

—We observe that nodes in social networks naturally cluster together. This finding
prompts us to develop a new framework for the influence maximization problem,
namely, community-based influence maximization (CIM), which explores the com-
munity information to effectively reduce computation of overlapped influence spreads
to achieve high efficiency.

—Aiming to obtain good clusters for CIM, we develop a hierarchical clustering algo-
rithm, called H Clustering, to detect the community structure of a social graph. We
find that the size of the community and the ratio between the required seeds and
nodes of the graph are effective for filtering out insignificant nodes. Hence, we adopt
these ideas for candidate reduction in CIM.

—We argue that a large community may have a large potential influence spread, and
thus we use the total number of nodes in the community to decide the number of seeds
to be allocated. This idea avoids the greedy selection of seed nodes and significantly
reduces the overhead for running the HDM model.

—We conduct a comprehensive evaluation by experimentation using real datasets.
The experimental results show that algorithm CIM significantly outperforms the
state-of-the-art algorithms in terms of both efficiency and influence spread.

The rest of this article is organized as follows. Section 2 describes the research
problem, discusses our observations, and reviews some relevant works. Section 3 details
the CIM framework and associated algorithms. Section 4 presents the experiments on
several synthetic and real datasets. Finally, Section 5 concludes.

2. PRELIMINARIES

In this section, we first formulate the influence maximization problem based on the
heat diffusion model, then we discuss some observations that lead to our strategies in
addressing the targeted research problem, and finally we review some related works.

2.1. Problem Formulation

In this article, a social network is modeled as an undirected graph G (V, E), where V =
{v1, v2, . . . , vn} is the vertex set and E = {(vi, v j) | vi, v j ∈ E} is the set of edges in
the graph. A node represents an individual, and an edge between two nodes represents
their social relationship (e.g., friendship or co-authorship, to name a few). A node is
marked as active if it has adopted an idea or an innovation, or as inactive if it has not.
Thus, the problem of influence maximization is given here.

Influence Maximization Problem. Given a social network G = (V, E) and a number
k, the task is to determine k seeds (i.e., nodes) such that these seeds could spread
their influence to other nodes with an objective of maximizing the number of nodes
influenced by the seeds.

As mentioned earlier, in order to capture the temporal process of information dif-
fusion, which is important for market planning, we consider the heat diffusion model
(HDM) [Ma et al. 2008] to model the information diffusion on social networks. HDM,
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formally described next, is a realistic model that simulates social behavior in accor-
dance with a physical phenomenon, heat flow (diffusion).

Heat Diffusion Model (HDM). Let fi(t) denote the heat at node vi at time t. Suppose
that an initial distribution of heat starts at time zero, and at time t, each node vi
receives an amount of heat from its neighbor v j during a period �t. The heat received
is proportional to the time period �t and the heat difference f j(t) – fi(t). As a result,
the heat difference at node vi between time t and t + �t will be equal to the sum of the
heat that it receives from all its neighbors. This is formulated as

fi(t + �t) − fi(t)
�t

= α� j:(v j,vi)∈E( f j(t) − fi(t)) = αH f (t), (1)

where H is a matrix and α is the heat diffusion coefficient. If the amount of heat of
node v exceeds the activation threshold θ , we think node v will purchase a product or
adopt an innovation.

Influence Maximization Problem Based on HDM. Given a social network G based on
HDM, by selecting k individuals in V as seeds denoted as a set S = {s1, s2, . . . , sk}, and
giving each of them a certain amount of heat h0, we can obtain the influenced spreads
(i.e., the number of influenced nodes) with G and S, as follows. At time t0 of the heat
diffusion process, we set fsi(t0) = h0 for each si ∈ S. As time elapses, the heat will diffuse
throughout G based on Eq. (1). If the amount of heat of each individual vi ∈ V at time
t is larger than or equal to an activation threshold θ , vi will be considered as being
successfully activated (or influenced). We define the set of active nodes influenced by
S at time t as Is(t). Accordingly, the influence maximization problem based on HDM
is interpreted as follows: given a social network G (V, E), find a set S (consisting of k
seeds) to maximize the size of active nodes Is(t) at time t, where Is(t) = {vi | fvi(t) ≥ θ ,
vi ∈ V}.

2.2. Observations

In this article, we aim to tackle the efficiency issue of the influence maximization
problem based on HDM by exploring the community structures embedded naturally
in social networks. Based on our preliminary analysis of the influence maximization
problem and the properties of community structures, we made the following obser-
vations which raise some potential issues and provide good guidance for algorithm
designs in the CIM framework. First, we argue that nodes in social networks naturally
cluster together. To effectively reduce the overhead incurred in computing influence
spreads based on HDM, we shall explore the clustering phenomenon among nodes in
a community to avoid the computation of overlapped influence spreads among nodes
in the same community. Consider Figure 3(a) as an example where we can observe
three communities in the graph. Suppose that we want to select two seeds. If we choose
node 3 as a seed and give it an amount of heat (i.e., influence), it will spread to nodes
1, 2, 4, 5, 6, 7 and 8. Suppose we choose node 6 as another seed; most of the heat will
flow to the nodes that have already been activated, as shown in Figure 3(b). The darker
color means the node has a greater amount of heat. We can conclude that if we choose
many nodes in the same community as seeds, most gains in heat are within their own
community instead of other communities.

Second, in reality, the social network is usually extremely huge. How to effectively re-
duce the search space of seed nodes is an important issue. By analyzing the community
structures, we observe that not all communities are significant enough to accommo-
date seed nodes. For example, in Figure 3, although we have three communities in
the network, community 3 may be too small to be worth placing a seed there, because
selecting the nodes in community 3 as a seed may only activate three nodes initially.
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Fig. 3. The community structure of an example network.

Hence, it is insignificant in comparison with other large communities. We may prune
off insignificant communities and their nodes from consideration, thereby reducing the
search space of seed selection.

Third, while we pointed out earlier that we may want to avoid placing multiple seeds
in the same community, the size of community is still a factor for seed placement. We
should not treat every community the same, as placing seeds in a large community
could trigger more adoptions of a product or an innovation than in a small community.
For example, in Figure 3, if we want to select three seeds, we should select two seeds
in community 1 and one seed in community 2 instead of selecting one seed in each
community. Finally, nodes connecting many communities (called hubs), for example,
node 10 in Figure 3, may play an important role in influence maximization problem,
as the influence can spread easily from hubs to many different communities.

2.3. Related Works

In this section, we review some closely related existing works, categorized as (1) dif-
fusion models, (2) influence maximization algorithms, and (3) community clustering
algorithms.

Diffusion Models. Diffusion is a type of communication concerning the spread of
messages perceived as new ideas or innovations. Rogers [2003] theorizes the diffusion
process where an innovation is communicated via certain channels among the members
of a society. Due to emerging online social networking services and their potential in
viral marketing, diffusion models in social networks have received growing research
interests in recent years [Estevez et al. 2007; Goldenberg et al. 2001; Ma et al. 2008;
Valente 1995; Young 2000]. In addition to the heat diffusion model (HDM) adopted in
our research work, here we review some other well-known models.

Consider an undirected social graph G (V, E). Let N(v) = {u | (u, v) ∈ E} be the
neighbor set of node v and buv be the influence of active node u on its inactive neighbor
v. The linear threshold model (LTM) defines A(v) as the set of active nodes in N(v),
(A(v) ⊆ N(v)), denoting those who have adopted an innovation or a marketed product.
Given an activation threshold θ , for a node v, if �u⊆A(v ) buv ≥ θ , node v becomes active.
The intuition is that, for an inactive node v, if the total influence exerted by all its active
neighbors exceeds θ , node v becomes active. LTM assumes that the newly activated
node v will also exert influence on its inactive neighbors and thus make some inactive
neighbors become active. This process will continue until no node can be activated. On
the other hand, as its name suggests, the independent cascade model (ICM) assumes
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that a node u, once activated, will try to activate its inactive neighbor v with a success
probability p, independent of the influence of other neighbor nodes. Notice that ICM
assumes that an active node u has only one chance to activate its neighbor v. If it fails,
it will not be able to activate v anymore.

Time plays an essential role in diffusion flows in a social network. Some models
focus on inferring the underlying dynamics over a network [Gomez-Rodriguez et al.
2010]. NETINF [Gomez-Rodriguez et al. 2010] investigates the problem of tracing
paths of diffusion and infers network connectivity using submodular optimization.
CONNIE [Myers et al. 2010] infers the connectivity and a prior probability of influence
for every edge using a convex program and some heuristics. However, both models
force the transmission rate between all nodes to be fixed. By allowing transmission at
different rates across different edges, NETRATE [Gomez-Rodriguez et al. 2011] is able
to infer temporally heterogeneous interactions within a network. Thus, NETRATE can
simulate the temporal dynamics over the underlying network.

Compared to the HDM adopted in our study, the aforementioned ICM and LTM are
not useful for predicting the future behavior of the network [Domingos 2005; Domingos
and Richardson 2002]. Some other diffusion models [Estevez et al. 2007; Young 2000]
have been proposed recently, but they are mostly variations of LTM and ICM. On
the contrary, NETINF, CONNIE, and NETRATE focus on inferring the tracing path
of diffusion and temporal dynamics over a given network [Gomez-Rodriguez et al.
2010, 2011; Myers et al. 2010]. A social network is a very complex network with all
kinds of messages flowing within it. Modeling social network marketing realistically
is extremely difficult. As pointed out in Ma et al. [2008], HDM provides more realistic
parameters to simulate the conditions of diffusion in the real world, such as time and
thermal conductivity. Thus, we adopt HDM as the diffusion model in this work.

Influence Maximization Algorithms. The influence maximization problem, under the
context of various diffusion models, has been shown to be NP-hard in general. Many
works have been proposed to obtain approximate solutions. As a person with a lot of
friends may be regarded as influential, a widely adopted heuristic to address the in-
fluence maximization problem is to select seeds based on their degree, called degree
centrality. Nevertheless, members of large communities often have a larger degree
than members of small communities. Consequently, degree centrality may easily re-
sult in seeds in the same large community. As the influence spreads (i.e., the number
of influenced nodes) of seeds in the same community tend to overlap, another com-
monly used heuristic is distance centrality which selects seeds in order of increasing
average distance to other nodes. However, nodes in large communities usually have a
small average distance, so distance centrality also results in seeds in the same large
community. In summary, both degree centrality and distance centrality result in the
phenomenon of seed clustering, leading to a sharp deterioration in influence spread.

The set cover greedy algorithm [Estevez et al. 2007], developed based on ICM, takes
a priority to select the node with the highest “uncover degrees” as the seed. Once a seed
is selected, all its neighbors as well as itself are labeled as “covered”. This procedure
continues until k seeds are selected. This algorithm is computationally efficient under
simple models, such as ICM. However, it has good influence spread only when the
model has high success probability. The climbing-up greedy algorithm [Kempe et al.
2003] was proposed based on both the ICM and LTM models with approximation
guarantees for influence spread. It selects the most “influential” node on the condition
of considering all the seeds selected before. For selecting the most influential node, we
have to compute each node’s influence until the required k seeds are selected. Due to the
heavy computing load, the climbing-up greedy algorithm is not appropriate for large
social networks. The potential-based node selection method [Wang and Feng 2009] is
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proposed to select some inactive nodes that might not be optimal in the starting phase
but which could trigger more nodes in a later stage of diffusion. It can save half the
time of the climbing-up greedy algorithm and cause more adoptions than the method
in Kempe et al. [2003]. However, in practice, it is still not efficient enough for large-
scale online social networks. Based on a variation of ICM, Saito et al. [2011] construct a
layered graph approach and apply bond percolation with two control strategies, pruning
and burnout, to solve the influence maximization problem. The pruning method is
effective when searching for a single influential node, and the burnout method is
powerful for searching for multiple influential nodes. Finally, an efficient algorithm,
based on the degree discount heuristic, was presented in Chen et al. [2009], which
obtains approximate solutions in large datasets in only a few seconds. However, they
work only under LTM or ICM. In addition, the degree discount heuristic is only for very
low successful probability, that is, it is extremely hard for people to be influenced.

Borrowing the idea from Kempe et al. [2003], the enhanced greedy algorithm
[Ma et al. 2008] is proposed for HDM. Like the climbing-up greedy algorithm, it incurs
excessive computation and hence is not feasible for large-scale social networks.

Community Detection. A community is characterized as a subset of individuals who
interact with each other more frequently than other individuals outside the community
[Wasserman and Faust 1994]. Community discovery is similar but not equivalent to
the conventional graph partitioning problem. Both community discovery and the graph
partitioning problem aim to cluster vertices into groups. A key challenge for the former,
however, is to decide what the “most natural” partition of a network is, that is, we do
not need to give any heuristic information to guide the partition. Moreover, if there
exists no good community structure, there is no need to partition the network. This
is why we use the community detection algorithm rather than the graph partitioning
algorithm in our research.

A quantitative measure, called modularity (Q), has been proposed [Wan et al. 2008]
to assess the quality of community structures and to formulate community discovery
as an optimization problem. Since optimizing Q is an NP-problem, several heuristic
methods have been proposed, as surveyed in Danon et al. [2005]. Assume that M is the
number of edges and N is the number of nodes. The time complexity of most community
detection algorithms [Bortner and Han 2010; Danon et al. 2005; Ester et al. 1996; Feng
et al. 2007; Girvan and Newman 2002; Huang et al. 2010; Lancichinetti et al. 2009; Ng
et al. 2001; Newman 2004; Palla et al. 2005; Ruan and Zhang 2007; Wan et al. 2008;
White and Smyth 2005; Xu et al. 2007] is between O(N logN) and O(N3).

3. THE COMMUNITY-BASED INFLUENCE MAXIMIZATION FRAMEWORK

In this section, we present the proposed community-based influence maximization
(CIM) framework and discuss our approaches to address the arising issues. As il-
lustrated earlier in Figure 2, CIM consists of three phases: (i) community detection;
(ii) candidate generation; and (iii) seed selection. The following section details each
phase of CIM.

3.1. Community Detection in CIM

In a social network, a community is a subset of individuals who interact with each
other more closely than other individuals outside the community [Wasserman and
Faust 1994]. As we observe some potential advantages of exploring community struc-
tures in influence maximization problem, designing an effective clustering algorithm
for CIM is an immediate task we face. Such an algorithm needs to meet our ultimate
goal of reducing computational overhead in the influence maximization problem is an
immediate issue that we face. We believe that the notion and principles of community
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are able to capture human nature in social networks. Thus, our community detection
algorithm intends to detect the most natural communities of a social network without
relying on heuristics, for example, the number of partitions. Notice that if a social
network naturally accommodates three communities, we really should not force a par-
tition of the network into four communities, even if an influence maximization task
would like to select four seeds. Thus, in this article, to discover community structures,
we aim to develop a clustering method without specifying the number of communities.

The clustering algorithm developed for phase (i) of CIM is called hierarchical clus-
tering (abbreviated as H Clustering). In H Clustering, we incorporate the notion of
modularity [Newman 2006] based on a bottom-up approach to iteratively merge nodes
with strong structure similarity into communities. Initially, for each node in the given
social network, H Clustering derives the structural similarity between the node and
its neighboring nodes, where the structure similarity is used as the edge weight for its
neighboring nodes. The similarity function is defined as follows.

Definition 1 (Structural Similarity between Nodes). Given a social network G = (V,
E), the set of adjacent nodes of a node u ∈ V is defined as adj(u). Note that adj(u) also
includes u, that is, u ∈ adj(u). The similarity between two adjacent nodes u and v is
defined as follows:

Sim(u, v) = |adj(u) ∩ adj(v)|√
|adj(u)| × |adj(v)|

. (2)

After obtaining the structure similarities of all edges in the network, H Clustering
first treats each node as a community and groups each pair of nodes into a commu-
nity if the structural similarity between these two nodes is the largest among their
surrounding edges from each other. For example, given two nodes u and v, if the edge
(u, v) is the largest among all edges connecting to u and also is the largest among all
edges connecting to v, we merge u and v into a community. Next, we treat each newly
created community as a node, and the process continues until a termination condition
is reached. Borrowing an idea from the SHRINK algorithm [Huang et al. 2010], we
adopt the modularity gain [Feng et al. 2007; Wan et al. 2008] to measure the quality
of discovered communities in order to decide when to stop the community detection
process. The definition of modularity gain is as follows.

Definition 2 (Modularity Gain). Given a social network G = (V, E) and its clustering
result C = {c1, c2, . . . , cp}, the modularity function is defined as

Q(C) =
p∑

i=1

[
ISi

T S
−

(
DSi

T S

)2
]
, (3)

where ISi = �u,v∈ci Sim(u, v) is the summation of total similarity of nodes in cluster
ci, DSi = �u∈ci,v∈V Sim(u, v) is the summation of similarity of nodes in cluster ci and
other nodes in the network, and TS = �u,v∈V Sim(u, v) is the summation of similarity
between any two nodes in the network. For G, given two different clustering results C
and C’, the modularity gain from C to C’ is defined as �QC→C ′ = Q(C’) − Q(C).

Notice that H Clustering utilizes the modularity gain as the terminated criteria. At
each iteration, based on the clustering result from the last iteration, we merge all pairs
of nodes with the strongest structural similarity among their neighbors to form larger
communities. Suppose the clustering result in the last iteration and in the current
iteration are C and C’, respectively. If the modularity gain from C to C’ is negative,
H Clustering will stop clustering, since the previous clustering result is good enough.
As a result, there are some homeless nodes in the network which are not included in any
community. Similar with the SHRINK algorithm, these homeless nodes represent two
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Fig. 4. An example to show community discovery by H Clustering.

interesting node types: hub and outlier. The homeless nodes whose neighbors are within
only one community are outliers; other homeless nodes are hubs that connect different
communities. Hubs can provide more information about the community structures
and the connectivity of networks, which are very useful for influence maximization.
We will discuss this in the next section. To justify the proposed H Clustering, we
compare H Clustering with several clustering algorithms [Huang et al. 2010; Karypis
and Kumar 1996; Newman 2002, 2004; Ruan and Zhang 2007] in Section 4.3 to show
the runtime performance and how the discovered communities affect the influence
spread in CIM.

Figure 4 illustrates an example of discovering communities by H Clustering. Given
a network G1, H Clustering first derives the structural similarity of all edges in G1
with Eq. (2), as shown in Figure 4(b). We use edge (4, 5) as an example. Since adj(4) =
{1, 3, 4, 5} and adj(5) = {4, 5, 6}, Sim(4, 5) = |{4,5}|√

|{1,3,4,5}|×|{4,5,6}| = 2√
4×3

= 0.577. Other

edge weights in the example are similarly obtained. At each iteration, we merge each
pair of nodes into a community if both of these two nodes have the largest similarity
among their other neighbors from each other, that is, the similarity of the edge between
two nodes is not less than their surrounding edges. As the two edges in red dotted
circles, as shown in Figure 4(b), are the largest, we can group them into communities,
resulting in a new graph, as shown in Figure 4(c). Repeating the process, we obtain
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Figure 4(d) by merging node 2 with node {1, 3} and node 6 with node {7, 8}, respectively.
Similarly, node {1, 2, 3} and node 4 are merged to obtain the graph in Figure 4(e).
H Clustering stops at the 4th iteration after making an attempt to merge all nodes
into one community in Figure 4(f), because �Q3→4 < 0. Consequently, H Clustering
outputs the discovered community structure, as shown in Figure 4(g), where node 5 is
a hub connecting communities {1, 2, 3, 4} and {6, 7, 8}.

3.2. Candidate Generation

In light of the discovered community structures, the candidate generation phase aims to
determine a set of candidate seeds based on the size of communities and the connectivity
of the nodes among communities. Notice that as social networks in realistic settings
are extremely large, the search space for selecting seeds with maximal influence spread
is also huge. Therefore, there is a need to effectively reduce the number of candidate
seeds. How to narrow down the size of the candidate set of seeds is a core issue in CIM,
faced in this phase.

Based on our observations discussed in Section 2.2, seeds selected from a large com-
munity could trigger more adoptions of a product or an innovation than seeds selected
from a small community. Therefore, an intuitive approach is to select the centroid
nodes of the k-largest communities in the social network as the k-influential seeds.
However, this naı̈ve approach has some potential problems: (1) the aforementioned
observation may also imply that we should select more seeds in large communities;
(2) some valuable information in the community structure is ignored. Notice that the
proposed H Clustering, in addition to detecting communities, also identifies hubs (i.e.,
a node connecting different communities). While the centroids of communities may
seem to be natural candidates for seed selection, the hubs should also be considered,
as they can easily spread their influences to many different communities.

Instead of simply designating an arbitrary number of large communities as signif-
icant, we formally define significant communities as those that have the number of
nodes larger than the average number of nodes a seed may influence in a given influ-
ence maximization task. By pruning the insignificant communities, we can effectively
reduce the number of seed candidates.

Definition 3 (Significant Communities). Given a social network G = (V, E) and a
number k, H Clustering derives a set of communities, denoted as C = {c1, c2, . . . , cp},
where ci is the ith community and ni denotes the number of nodes in ci. The set of
significant community Cs is defined as follows:

Cs =
{

c j ∈ C|nj ≥
∑p

i=1 ni

k

}
. (4)

How to decide the centroids of significant communities is also an essential problem.
In general, the degree of nodes in a social network fits the power-law distribution
[Albert et al. 1999; Barabasi and Albert 1999], that is, a very large number of nodes
have a very small number of neighbors. High-degree nodes usually reside in large com-
munities. Hence, our first strategy is to consider high-degree nodes as the centroids of
communities. However, some information obtained in phase (i) of CIM is also useful
for identifying the centroids of community. Since the similarity score defined in Def-
inition 1 reveals the structural information of a node, the information is also a good
criterion to leverage for selecting the centroids of communities. The summation of these
scores of a node is a potential factor for candidate generation. Our second strategy is
to identify the nodes with large summation of similarity scores as the centroids of
communities.
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With the purpose of generating a small set of seed candidates (instead of exhaus-
tively considering all the nodes in the network), our method is to consider only the
potential centroid nodes (i.e., nodes with high degree and large score sum) in signifi-
cant communities and the hub nodes as candidates by eliminating outliers and nodes
in some “insignificant communities”. Accordingly, we collect the top-p% of high-degree
nodes and large-score-sum nodes in each significant community and all hub nodes con-
necting significant communities as the candidate set. Our empirical study (detailed in
Section 4.4) shows that, in most cases, including the top-10% of nodes of each signifi-
cant community, the candidate set is sufficient to select good seed nodes. For example,
as in Figure 3, community 3 is an insignificant community and will be pruned off.
Suppose we collect the top-20% of high-degree nodes in each significant community.
The candidate set consists of three nodes: nodes 3 and 6 in community 1, node 13 in
community 2, and hub node 10 connecting communities 1 and 2.

3.3. Seed Selection

Given a set of candidate seeds, phase (iii) of CIM is to decide k of them as the final
seeds. Although we have effectively reduced the number of seed candidates, the task
of seed selection in algorithm CIM is still very time consuming (albeit it has already
improved a lot). Specifically, for various combinations of k seeds selected from the
candidate seed set, the computation of influence spreads is carried out by simulating
how influences (heat) spread from those seeds based on the heat diffusion model that
incurs a significant amount of computation cost. We address this problem with a two-
step approach for seed selection. In the first step, we adopt a quota-based approach to
determine the number of seeds to be allocated for a given significant community and
then determine which nodes should be selected for this significant community based
on a heuristic of position score and hub purity. As this is a fast heuristic-based seed
selection approach, we do not expect the result to be optimal. Nevertheless, we believe
that the selection has its merits and can be used to filter out the majority of inferior
selections. Thus, in the second step, we heuristically, again based on the community
structures, find a new candidate seed which may potentially increase the influence
spread to swap with a seed node, aiming to obtain a better seed set. This process is
repeated until the influence spread does not improve any more or a certain number of
seed node swapping has been performed.

Here we first describe how we obtain the initial seed selection in step 1. As the size
of communities is a factor for determining significant communities, we shall not treat
all the significant communities the same, as placing seeds in a large community could
trigger more adoptions of a product or an innovation than in a small community. CIM
uses the total number of nodes in significant communities to decide how many seeds
are allocated to each significant community. Given a social network G = (V, E) and a
number k, let Cs be a set of significant communities in G. Suppose Cs = {c′

1, c′
2, . . . , c′

q}
and each c′

i has n′
i number of nodes; the quota of seed nodes allocated in c′

i is defined as

quota(c′
i) = k × n′

i∑q
j=1 n′

j
. (5)

Consider the example in Figure 3, where the number of seeds is set to three. From
our formulas in Eq. (5), communities 1 and 2 will be allocated two seeds and one seed,
respectively.

After deciding the quota for communities in Cs, we take turns to select quota(c′
i) of

high-priority nodes for each community c′
i. Notice that if we only consider the member

nodes of a significant community for its allocated quota, we shall leave out those
important hub nodes. Thus, we include all the candidate nodes of c′

i (i.e., the top-p%
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Fig. 5. An illustration of position score and hub purity.

nodes with high degree and large score sum) and all the hub nodes connecting to c′
i, to

compete for the quota of c′
i. The selected seeds for c′

i are included in the initial seed set
(for further tuning in the second step).

In the following, we detail some concepts/notions used in the seed selection of CIM.
Note that the main goal in phase (iii) is to set the priority among the high-degree
nodes, large-score-sum nodes, and hub nodes to select seeds. Hence, we first define
two metrics, position score (in Definition 4) and hub purity (in Definition 5), for hub
nodes, because their position in the network bears importance. Also, hubs connecting
to too many communities may possibly impair their influence. Then, we formulate
a compare priority function (in Definition 6) to decide the priority of two nodes in
the candidate set. Finally, two evaluation metrics, left and seed load, are defined (in
Definitions 7 and 8), serving as the heuristics to determine the final seeds, respectively.

Definition 4 (Position Score). Given a social network G = (V, E) and a set of signif-
icant communities C = {c1, c2, . . . , cp}, to assess the importance of a hub’s position in
the network, the position score of a hub u ∈ V is defined as the number of communities
which u connects to, that is,

position score(u) = |{ci| ∃ (u, v) ∈ E ∧ v ∈ ci}|. (6)

Obviously, if node u is a hub node, the position score(u) is greater than 1; other-
wise, the position score(u) is 1. In general, the more communities connected to a hub,
the more easily influence propagates from the hub to these communities. However, if
some connected communities of a hub have chosen their seeds, the influential power
of the hub may deteriorate. Thus, hub purity of a hub is defined to provide a precise
measure of the remaining importance of a hub node.

Definition 5 (Hub Purity). Given a social network G = (V, E) and a set of significant
communities C = {c1, c2, . . . , cp}, for a hub u ∈ V,

hub Purity(u) = |{ci|∃(u, v) ∈ E ∧ v ∈ ci ∧ ci /∈ SC|
position score(u)

, (7)

where SC is a set of communities in C that have already chosen initial seeds. For
example, in Figure 5, node 8 is a hub connecting community 1 and community 2; its
position score is 2 (because it connects two communities). If community 2 has selected
node 12 as an initial seed, its hub purity is 1/2.

Notice that a high-priority node refers to a node that has a high degree in its com-
munity, possesses a large-summation similarity score in its community, or is in a good
position in the network. To decide the priority of two nodes in a candidate set, we use
the function compare priority, which works as follows.

Definition 6 (Compare priority). Given two candidate nodes of a community, which
can be a high-degree node in the community, large-score-sum node in the community,
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or a hub node connecting to the community, the priority order of these two nodes is
governed by the following rules.

(1) To compare two non-hub nodes, the node with a higher degree has a higher priority.
If two non-hub nodes have the same degree, we choose the node with a larger
summation of similarity score. Because the position of a non-hub node is not as
critical as a hub node, we compare two non-hub nodes by their influences on their
neighbors (i.e., the degree and the sum of similarity scores).

(2) To compare two hub nodes, the node with a higher position score has a higher
priority. If two hub nodes have the same position score, we choose the one with
a higher degree; and if two hub nodes have the same position score and degree,
we choose the one with a larger summation of similarity score. We compare hubs
according to how many communities they belong to, since we want to choose a hub
which is in an important position in the network. Besides, the purities of comparing
hubs must exceed the purity threshold. A low-purity hub is not a good choice, since
it may cover too many communities.

(3) To compare a non-hub node with a hub node, the node with a higher degree has
a higher priority; and if two nodes have the same degree, the node with a larger
score summation has a higher priority. If the two nodes have the same degree and
score summation, the hub node has a higher priority, since it can spread influence
among many communities.

Recall our example in Figure 3, where three seeds are to be selected; as mentioned
in Section 3.2, the candidate set of community 1 includes nodes 3, 6, and 10, and the
quota of community 1 is two. With the compare priority function, we will select nodes
3 and 6 as the initial seeds of community 1.

By collecting all selected top-quota(c′
i) high-priority nodes in each significant com-

munity c′
i, we can derive a set of initial seeds. The initial seeds may be the final seeds;

however, not all of them can derive good influence spread under different states of the
heat diffusion model, that is, some seeds may perform well within a short period after
the heat (influence) is injected, but they may not perform well for a long run. In other
words, the parameter setting in the heat diffusion model has an impact on selecting
final seeds. Hence, in the second step of phase (iii), CIM heuristically replaces initial
seeds with the nodes remaining in the candidate set to test whether we can increase
the influence spread. This process allows us to tune the influence spread under dif-
ferent parameter settings in HDM, including flow duration, activation threshold, and
thermal conductivity. We discuss the effect of flow duration, activation threshold, and
thermal conductivity individually.

Comparing the different effect by time duration, information will diffuse farther in
long flow duration, that is, in long flow duration, the seeds would influence more in-
dividuals than in short flow duration. Therefore, we should not select too many seeds
from a single community in long flow duration. In contrast, it is better to select more
seeds from a single community if the flow duration is very short. It is more difficult to
make individuals adopt products if the activation threshold is high. Individuals need
more heat to be activated with a higher activation threshold, so we tend to select more
seeds in one community with a high activation threshold. High thermal conductiv-
ity makes information diffuse more quickly. Compared with low thermal conductivity,
information of high thermal conductivity makes information diffuse over a longer dis-
tance. Hence, we do not select many seeds from one community with high thermal
conductivity. We conclude that different parameter settings may have an impact on
seed selection. It is better to select more seeds in one community with a short flow
duration, high threshold, and low thermal conductivity. On the contrary, in social net-
works with long flow duration, low threshold, and high thermal conductivity, not many

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 2, Article 25, Publication date: April 2014.



CIM: Community-Based Influence Maximization in Social Networks 25:15

seeds in a single community are needed. Therefore, the tuning in CIM by swapping
seeds allows us to test and verify whether large communities should need more seeds.

Here we describe the tuning process. CIM swaps some selected initial seeds to identify
the final seeds. The tuning takes r iterations to test the swapping heuristically. Usually,
r = k ∼ 2k is sufficient to obtain satisfactory influence spread. We choose a new seed
(called add-node) to replace an existing seed node (called delete-node) to test whether
the influence spread increases after the swapping. Two evaluation metrics, left and
seed load, are defined as the heuristics to determine the add-nodes and delete-nodes.

Definition 7 (Left). Given a social network G = (V, E) and a set of significant com-
munities Cs = {c′

1, c′
2, . . . , c′

q}, suppose that we have selected a set of initial seeds, PS.
After running HDM on G with PS, we obtain a set of active nodes IPS(G). We define a
function,

le f t(ci
′) = |{u|u ∈ ci

′ and u is a non-activated node}|. (8)

left (c′
i) may be seen as the potential nodes to be influenced and thus the potential gain

by adding more seeds to c′
i. As left (c′

i) increases, the potential gain by selecting more
seeds in c′

i also increases.
On the other hand, we define a function,

Definition 8 (Seed Load). Given a social network G = (V, E) and a set of significant
communities Cs = {c′

1, c′
2, . . . , c′

q},

seed load(c′
i) = size(c′

i)
|{u|u ∈ c′

i ∩ PS}| . (9)

The function seed load(c′
i) indicates whether too many seeds are selected from c′

i. When
seed load(c′

i) is small, there are too many seeds in c′
i.

In each iteration � (where 1 ≤ � ≤ r), CIM first selects the node with the maximal
priority node from community c′

i in Cs which has �-largest left(c′
i) as an add-node. Note

that the add-node is certainly not a seed node in PS. Since we have already collected all
of the top-p% highest-degree nodes and largest-score-sum nodes of c′

i and all hub nodes
connecting c′

i to form the candidate set, add-node can be found quickly. Then CIM selects
a delete node, delete-node, from PS, where the delete-node is the minimum priority node
in c′

j which has minimum seed load(c′
j). Finally, we test whether we should substitute

an add-node for the delete-node. If the influence spread after swapping increases, we
formally make the swap and continue the process. In general, r = k ∼ 2k is sufficient
to obtain satisfactory influence spread in most cases.

3.4. CIM Algorithm

Based on the preceding descriptions for each phase, the algorithm for the whole CIM
framework is shown in Algorithm 1. The information of community structure and hubs
can be discovered by H Clustering. With insignificant community pruning, CIM can
derive a set of significant communities (lines 2–3). Suppose we have a set of significant
communities Cs = {c′

1, c′
2, . . . , c′

q}, as defined in Definition 3. For each c′
i, we select the

top-p% high-degree nodes and large-score-sum nodes in c′
i and hub nodes connecting

to c′
i to form a candi set.c′

i (lines 4–5). Then we choose top-quota(c′
i) high-priority nodes

from the candidate set as initial seed nodes (lines 6–13). Note that if we have selected
a hub node connecting to c′

i as an initial seed, each unchosen significant community
which has an edge to this hub requires reducing its size (lines 11–13). For example, as
shown in Figure 5, if node 8 had been selected as an initial seed node in community 1
(size = 7), the size of community 2 (size = 6) would reduce the degree of node 8
in community 2, that is, 6 − 3 = 3. Community-size reduction can effectively avoid
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ALGORITHM 1: CIM (G, k)
Input: Graph of social network G(V, E); number of total seeds k
Output: k seeds

01: PS ← Ø; // set of initial seeds

// phase (i): community detection
02: C = {c1, c2, . . . , cp} ← H Clustering(G);
03: Cs = {c′

1, c′
2, . . . , c′

q} ← pruning insignificant community in C;

// phase (ii): candidate generation
04: for each c′

i in Cs do
05: candi set.c′

i ← collect top-p degree nodes and score-sum nodes of c′
i and hub nodes

connecting to ci’;

// phase (iii): seed selection
06: for each c′

i in Cs do // select the initial seed nodes
07: n ← quato(c′

i);
08: prio set ← compare priority(candi set.c′

i) and select top-n priority nodes;
09: PS ← PS ∩ prio set;
10: If ∃ hub node h in prio set then // size reduction
11: for each c′

j in Cs which has edge connected to h do
12: m ← |{u|u ∈ c′

j ∧ ∃(u, h) ∈ E}|; // number of nodes in c′
j connected to h

13: size(c′
j) ← size(c′

j) − m;
14: IPS(G) ← execute HDM on G with PS; //IPS(G): the set of active nodes of PS
15: IM ← |IPS(G)|; // IM : save the max number of active nodes

16: for � = 1 to r do // initial seed tuning
17: T ← PS; // a temp set
18: add node ← select maximum priority node u ∈ candi set.c′

i where left (ci) is top-�
maximum in Cs;

19: delete node ← select minimum priority node v ∈ c′
j ∩ PS where seed load(c′

j) is
minimum in Cs;

20: replace the delete node with add node in T;
21: IT (G) ← execute HDM on G with T;
22: if IT (G) > IM then
23 PS ← T ; IM ← |IT (G)|;
24: Output nodes in PS as seed nodes;

influence overlap, since size reduction also changes the quota of allocated seed nodes in
the community. The initial seed nodes may have a very good position connecting many
significant communities or have high connectivity in a community. The set of selected
initial seeds is denoted as PS. Finally, CIM tunes selected initial seeds to identify the
final seeds (lines 16–23) and outputs the selected nodes as seeds (line 24).

4. EXPERIMENTS

To evaluate the performance of proposed CIM, three influence maximization
algorithms, CDH-Kcut [Chen et al. 2012], CDH-SHRINK [Chen et al. 2012], and en-
hanced greedy algorithm (EGA) [Ma et al. 2008], are implemented for comparison. We
also implement a naı̈ve algorithm, degree heuristic (DH) as a baseline, which only se-
lects the top-k largest-degree nodes as the seed nodes. All algorithms are designed based
on the heat diffusion model, are implemented in the C++ language, and are tested on
a Pentium D 3.0GHz with 2GB of main memory running the Windows XP system. The
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Table I. Parameters of LFR Benchmark Graphs

Parameters Description
N number of nodes
M number of edges
maxd maximum degree
mp mixing parameter (each node shares a fraction

mp of its edges with nodes in other communities)

Table II. Five Generated Synthetic Networks

Dataset N M maxd mp
1000Smp 1,000 9,097 100 0.1
1000Lmp 1,000 9,097 100 0.5

1000Lmaxd 1,000 9,097 200 0.1
1000LM 1,000 22,484 100 0.1
5000Smp 5,000 47,094 100 0.1

comprehensive performance study is conducted on five synthetic networks and three
real-world datasets, the karate network [Zachary 1997], the NETHep network [Chen
et al. 2012], and the Facebook network [Chen et al. 2012]. In each experiment, we vary
some parameters of the heat diffusion model to compare the influence spread (number
of activated nodes) and efficiency (execution time) of the five algorithms.

4.1. Synthetic Networks

The synthetic datasets in the experiments are generated using a synthetic generation
program, Lancichinetti-Fortunato-Radicchi (LFR) benchmark graphs [Lancichinetti
et al. 2008]. The parameter settings of the LFR generator are shown in Table I. We
generated five different undirected graphs, (1) 1000Smp: the graph with 1,000 nodes
and small mixing parameter; (2) 1000Lmp: the graph with 1,000 nodes and large mixing
parameter; (3) 1000Lmaxd: the graph with 1,000 nodes and large maximum degree;
(4) 1000LM: the graph with 1,000 nodes and large number of degree; and (5) 5000Smp:
the graph with 5,000 nodes and small mixing parameter, as shown in Table II. Generally
speaking, the higher the mixing parameter of a network, the more difficult it is to find
the community structure. Since all generated graphs are very small, the experiments
only discuss the influence spread. The comparison of execution time will be performed
in the next section (on NETHep network and the Facebook network).

Table III shows the results of the five algorithms with different activation thresh-
olds (θ ), flow duration (t), and thermal conductivity (α) on 1000Smp. We can observe
that CIM almost has the best influence spread. In the case t = 0.3, θ = 0.1, α = 0.1,
the number of active nodes is even larger than EGA. We find an interesting result; a
higher activation threshold leads to the phenomenon of seed clustering. Hence, by the
community comparison and the allocation of seed quota, CIM can derive a better influ-
ence spread. Table IV shows the influence spread of different algorithms with different
parameter settings on 1000Lmp. If it is difficult to identify the correct community
structure of the network, CIM performs worse than EGA; however, the number of ac-
tive nodes is better than CDH-SHRINK and CDH-Kcut. The accuracy of the detected
community structure reflects the performance of the influence spread of CIM. There-
fore, with increased mixing parameters (i.e., each node shares a fraction of its edges
with nodes in other communities), the influence spread performance of CDH-SHRINK
and CDH-Kcut deteriorates.

Table V indicates the influence spread of different algorithms with different param-
eter settings on 1000Lmaxd. Nodes in 1000Lmaxd have larger degrees, that is, the
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Table III. The Influence Spread of Different Algorithms on 1000Smp

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 215 341 341 339 341
t = 0.1, θ = 0.2, α = 0.1 215 336 335 332 343
t = 0.2, θ = 0.1, α = 0.1 336 386 379 345 383
t = 0.3, θ = 0.1, α = 0.1 472 503 499 508 508
t = 0.1, θ = 0.1, α = 0.2 336 386 386 345 386
t = 0.1, θ = 0.1, α = 0.3 472 503 498 503 503

Note: The largest influence spread is highlighted in boldface.

Table IV. The Influence Spread of Different Algorithms on 1000Lmp

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 206 251 249 233 251
t = 0.1, θ = 0.2, α = 0.1 187 225 225 215 225
t = 0.2, θ = 0.1, α = 0.1 484 562 559 535 560
t = 0.3, θ = 0.1, α = 0.1 722 790 782 763 787
t = 0.1, θ = 0.1, α = 0.2 484 562 560 520 562
t = 0.1, θ = 0.1, α = 0.3 722 790 781 742 786

Note: The largest influence spread is highlighted in boldface.

Table V. The Influence Spread of Different Algorithms on 1000Lmaxd

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 202 332 333 315 335
t = 0.1, θ = 0.2, α = 0.1 196 290 288 269 292
t = 0.2, θ = 0.1, α = 0.1 299 494 495 473 495
t = 0.3, θ = 0.1, α = 0.1 404 565 569 561 573
t = 0.1, θ = 0.1, α = 0.2 299 494 495 473 495
t = 0.1, θ = 0.1, α = 0.3 404 565 569 561 573

Note: The largest influence spread is highlighted in boldface.

degree of some nodes will be much larger than that of others. The community structure
in this graph is clearly manifested. Consequently, the performance of the influence
spread of two CDHs and CIM will improve, especially with a high activation threshold.
Note that the result of DH is also improved. By the observation, we can see that CIM has
the best influence spread with all parameter settings, because it can find a very good
community structure and allocate the correct number of seeds in each significant com-
munity. Although CDHs (based on SHRINK or Kcut) also discover the community struc-
ture, they omit the size effect and just give every community the same number of seeds.

Table VI shows the influence spread of five algorithms with different parameters
on 1000LM. In 1000LM, each node has more neighbors, so information will spread
quickly. Hence, we could see that the influence spread in 1000LM is higher than that
in 1000Smp, 1000Lmp, and 1000Lmaxd. In most cases, the influence spreads of CIM
are the same as EGA and better than CDH-SHRINK, CDH-Kcut, and DH. Table VII in-
dicates the influence spread of different algorithms with varying activation thresholds,
flow duration, and thermal conductivity on 5000Smp. 5000Smp is larger than these
graphs. Obviously, in most cases, the influence spread of CIM is almost the same as
EGA and still better than CDH-SHRINK, CDH-Kcut, and DH. In summary, CIM has
almost as good an influence spread as EGA. Considering the size effect and insignifi-
cant pruning of the community, CIM is more productive than both CDH-SHRINK and
CDH-Kcut.
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Table VI. The Influence Spread of Different Algorithms in 1000LM

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 521 663 653 653 660
t = 0.1, θ = 0.2, α = 0.1 316 506 499 487 506
t = 0.2, θ = 0.1, α = 0.1 184 226 226 218 226
t = 0.3, θ = 0.1, α = 0.1 816 923 919 898 920
t = 0.1, θ = 0.1, α = 0.2 996 1,000 993 1,000 1,000
t = 0.1, θ = 0.1, α = 0.3 816 923 919 898 920

Note: The largest influence spread is highlighted in boldface.

Table VII. The Influence Spread of Different Algorithms in 5000Smp

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 391 540 540 536 540
t = 0.1, θ = 0.2, α = 0.1 252 438 433 426 436
t = 0.2, θ = 0.1, α = 0.1 169 261 255 232 259
t = 0.3, θ = 0.1, α = 0.1 843 1,258 1,238 1,202 1,258
t = 0.1, θ = 0.1, α = 0.2 952 1,451 1,423 1,378 1,451
t = 0.1, θ = 0.1, α = 0.3 843 1,258 1,238 1,202 1,258

Note: The largest influence spread is highlighted in boldface.

4.2. Real Datasets

In addition to using synthetic datasets, we have also performed some experiments on
three real datasets: (1) Zachary’s karate network, (2) the NETHep network, (3) the and
Facebook network, to compare the performance and indicate the applicability of CIM
algorithm.

4.2.1. Zachary’s Karate Network. Zachary’s network [Zachary 1997] consists of 34 nodes
and 78 edges. Nodes represent the members of a karate club in the United States
who have been observed over a period of three years. Edges connect individuals who
have been observed to interact outside the activities of the club. The Zachary’s karate
network is shown in Figure 6. Table VIII lists the influence spread and the selected
seeds (the two numbers in parentheses) of the five algorithms with different parameter
settings. From Table VIII, we can find that CIM could select good seeds according to
different parameter values. In every case, CIM can obtain the same influence spread
as EGA. Furthermore, in the case t = 0.4, θ = 0.6, α = 0.1, the CIM obtains better
influence spread than EGA. In the case t = 0.1, θ = 0.2, α = 0.1 and case t = 0.1,
θ = 0.2, α = 0.2, two seeds, 0 and 33, are selected, as the red nodes in Figure 6.
However, we could see that the two seeds selected in case t = 0.1, θ = 0.2, α = 0.1
are 32 and 33. This is the reason why a high activation threshold easily causes the
phenomenon of seed clustering but high thermal conductivity does not. Therefore, two
seeds 0 and 33 are selected in case t = 0.1, θ = 0.2, α = 0.2, which are the same
selections in case t = 0.1, θ = 0.1, α = 0.1.

4.2.2. NETHep Network. In this section, we extract a large real academic collaboration
network, NETHep (http://snap.stanfords.edu/data), from the e-print. Each node in
the network represents an author. If an author a co-authored a paper with author b,
the graph contains an undirected edge from a to b. If the paper is co-authored by n
authors, this generates a completely connected graph of n nodes. Including all papers
from the period January 1993 to April 2003 (124 months), NETHep contains 12,008
nodes and 237,010 edges.

On the large real collaboration network, NETHep, we discuss the efficiency and influ-
ence spread of CIM, EGA, CDH-SHRINK, CDH-Kcut, and DH with different numbers
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Fig. 6. Zachary’s karate Network (red nodes are node 0 and node 33).

Table VIII. The Influence Spread and Two Selected Seeds of Different Algorithms
in Zachary’s Karate Network

parameter setting DH EGA CDH (SHRINK) CDH (Kcut) CIM
t = 0.1, θ = 0.1, α = 0.1 31 (0, 33) 31 (0, 33) 31 (0, 33) 31 (0, 33) 31 (0, 33)
t = 0.1, θ = 0.2, α = 0.1 6 (0, 33) 12 (32, 33) 12 (32, 33) 12 (32, 33) 12 (32, 33)
t = 0.1, θ = 0.3, α = 0.1 6 (0, 33) 12 (32, 33) 12 (32, 33) 12 (32, 33) 12 (32, 33)
t = 0.1, θ = 0.2, α = 0.2 31 (0, 33) 31 (0, 33) 31 (0, 33) 31 (0, 33) 31 (0, 33)
t = 0.4, θ = 0.6, α = 0.1 6 (0, 33) 8 (4, 7) 12 (32, 33) 12 (32, 33) 12 (32, 33)

Note: The largest influence spread is highlighted in boldface.

of seeds and values of parameters. In CIM, the purity threshold is set to 0.3, which
can get satisfactory influence spread. Figure 7 shows the influence spread of different
algorithms with different numbers of seeds on NETHep. The x-axis indicates the num-
ber of seeds and the y-axis indicates influence spread. In most cases, CIM’s influence
spread ≈ EGA’s influence spread > CDH-SHRINK’s influence spread > CDH-Kcut’s
influence spread > DH’s influence spread. With the increasing number of seeds, the
improvement of influence spread of CIM is better than that of two CDH algorithms.
Note that DH has poor results, since most seeds selected by DH are only in a few
communities.

Figures 8(a) and 8(b) show the influence spread of 10 seeds and 30 seeds with dif-
ferent activation threshold (θ ) from 0.1 to 0.5 with a span of 0.1, respectively. The
x-axis indicates the activation threshold, and the y-axis indicates the influence spread.
The results show that although the total influence spread of the four algorithms will
decrease as θ increases, CIM still maintains a good influence spread. Notice that DH
improves its influence spread with the increase of θ , which results from the effect of
seeds with high θ . However, it is still worse than CIM when selecting more seeds.

Figures 9(a) and 9(b) indicate the influence spread of 10 seeds and 30 seeds with
different flow duration (t) from 0.1 to 0.4 with a span of 0.1, respectively. The x-axis
describes flow duration, and the y-axis describes influence spread. The figures show
that our proposed algorithm still maintains good influence spread with the increase of
t. We only report results from t = 0.1 to t = 0.4, since a t value that is too large will lead
to the situation that most nodes are influenced, and thus we cannot easily distinguish
the performance of the five algorithms.
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Fig. 7. Influence spread of five algorithms on NETHep with t = 0.1, θ = 0.1, α = 0.1.

Fig. 8. Influence spread of different algorithms on NETHep with different activation threshold.

Fig. 9. Influence spread of different algorithms on NETHep with different flow durations.
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Fig. 10. Running time of different algorithms on the NETHep network when selecting 10 seeds and 50
seeds, respectively.

Figure 10 shows the execution time of five algorithms with 10 seeds and 50 seeds.
The x-axis indicates different algorithms, and the y-axis (logarithmic scale) indicates
the execution time. Since DH only needs to select the top-k degree nodes as seeds, its
execution time is extremely small. CIM has the most efficient execution time among the
other three algorithms and is about 4,924 times faster than EGA (68927/14). We can
also observe that the running time of EGA is proportional to the number of seeds. When
selecting 10 seeds and 50 seeds, the execution times of CIM are only slightly different.
This is because CIM only has to spend a little more time on turning initial seeds when
the number of nodes increases. As shown in Figures 7 and 10, although on average EGA
is about 0.8% better than CIM in terms of influence spread, the execution time is much
slower than the proposed CIM algorithm. According to the observation, compared with
two CDH algorithms, CIM can effectively reduce the iteration of initial seed tuning,
because it can find a very good community structure and allocate the correct number of
seeds in each significant community. Although CDHs (based on SHRINK or Kcut) also
discover community structure, they omit the size effect and just give every community
the same number of seeds. CIM also reduces the search space of seed identification with
the proposed insignificant pruning method. Nowadays, social networks are becoming
bigger and bigger. If an algorithm takes a long time to decide which set of individuals
should be seed nodes, its selection may be ineffective, and it will lose superiority due to
the dynamic variation of the networks. The efficiency of an algorithm is also a critical
issue.

4.2.3. Facebook Network. In this section, we discuss the influence maximization on
a large real social dataset, the Facebook network [Chen et al. 2012]. Each node in
the network represents a user. If user a is a friend of user b, the graph contains an
undirected edge from a to b. The network is denoted as FB, in the period from April 2004
to January 2009 (124 months), and contains 63,731 nodes and 817,090 edges. We not
only analyze the efficiency but also the influence spread of our algorithms with respect
to different numbers of seeds and parameter values. In CIM, the purity threshold is
set to 0.2, which can demonstrate satisfactory influence spread in FB.

Figure 11 shows the influence spread of five algorithms with different numbers
of seeds on FB. The x-axis indicates the number of seeds, and the y-axis indicates the
influence spread. As shown in the figure, in most cases, CIM’s influence spread ≈ EGA’s
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Fig. 11. Influence spread of five algorithms on Facebook with t = 0.1, θ = 0.1, α = 0.1.

Fig. 12. Influence spread of different algorithms on Facebook with different activation threshold.

influence spread > CDH-SHRINK’s influence spread > CDH-Kcut’s influence spread
> DH’s influence spread. Since EGA is too time consuming, we only show the influence
spread from 5 seeds to 30 seeds. When the number of seeds is larger than 33, EGA will
never terminate on our computer.

Figures 12(a) and 12(b) depict the influence spread of 10 seeds and 30 seeds with
different activation threshold (θ ) from 0.1 to 0.4 with a span of 0.1, respectively. The
x-axis indicates the activation threshold, and the y-axis indicates the influence spread.
Similar to the NETHep dataset, when 30 seeds are selected, CIM’s influence spread
≈ EGA’s influence spread > CDH-SHRINK’s influence spread > CDH-Kcut’s influence
spread > DH’s influence spread. Furthermore, the influence of CIM is better than that
of EGA in the cases θ = 0.3 and 0.4. This is an interesting result; we find that under
the criteria of a larger number of selected seeds and larger activation threshold, we can
derive a better community structure. On the contrary, in Figure 12(a), we can also see
that DH’s influence spread is better than that in Figure 12(b). This is partly because
the larger number of seeds may increase the possibility of information overlapping.
The top-degree nodes usually all stay in some large community.
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Fig. 13. Influence spread of different algorithms on Facebook with different flow durations.

Fig. 14. Running time of different algorithms on the Facebook network when selecting 10 seeds and
30 seeds, respectively.

Figures 13(a) and 13(b) illustrate the influence spread of 10 seeds and 30 seeds with
different flow duration (t) from 0.1 to 0.4 with a span of 0.1, respectively. The x-axis
indicates the flow duration and the y-axis indicates the influence spread. Unlike other
cases on NETHep or FB, in Figure 13(a), CIM’s influence spread > CDH-SHRINK’s
influence spread > CDH-Kcut’s influence spread > EGA’s influence spread > DH’s
influence spread. However, when we select 30 seeds, as shown in Figure 13(b), the
ranking of influence spread becomes CIM ≈ CDH-SHRINK ≈ EGA > CDH-Kcut >
DH. EGA still has the most influence spread in some cases. It is noticed that no matter
what parameter values are set on FB, CIM’s influence spreads are close to those of
EGA, or even better in some cases.

We present the experiment on execution times of the five algorithms with 5 seeds
and 30 seeds in Figure 14. The x-axis indicates the different algorithms, and the
y-axis (logarithmic scale) indicates the execution time. CIM has the most efficient
execution time. Just like on NETHep, we can observe that the running time of
EGA is proportional to the number of seeds. Overall, in terms of influence spread,

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 2, Article 25, Publication date: April 2014.



CIM: Community-Based Influence Maximization in Social Networks 25:25

CIM ≈ EGA > CDH-SHRINK > CDH-Kcut > DH; in terms of efficiency, DH > CIM
> CDH-SHRINK > CDH-Kcut >> EGA. One point which deserves mentioning is that
due to the phenomenon of seed clustering, CIM will get better performance in terms of
influence spread with high activation and with a larger number of required seed nodes.

4.3. The Performance Comparison with Existing Clustering Algorithms

Given a social network, phase (i) of CIM aims to discover the community structure of
the network to facilitate seed selection. Our proposed H Clustering not only discovers
the communities efficiently but also detects the hub nodes connecting to many com-
munities. To show the effectiveness and the efficiency of the proposed H Clustering,
we detail some existing clustering algorithms, including two agglomerative clustering
algorithms [Girvan and Newman 2002; Newman 2004], METIS [Karypis and Kumar
1996], Kcut [Ruan and Zhang 2007], and SHRINK [Huang et al. 2010].

The first agglomerative clustering algorithm [Girvan and Newman 2002] uses be-
tweenness centrality [Freeman 1977] to evaluate the distance of two adjacent nodes
and then removes edges with high betweenness progressively in each iteration to reveal
the underlying community structure of the network. The second agglomerative method
[Newman 2004] directly chooses the join (i.e., merging pair of nodes or communities
together) that results in the greatest increase (or smallest decrease) in modularity at
each step to hierarchically find the community structure without evaluating the sim-
ilarity of each edge. METIS [Karypis and Kumar 1996] presents a parallel multilevel
network partitioning algorithm. It first reduces the size of the network by collapsing
vertices and edges, then roughly partitions the smaller network into several parts,
and finally constructs the partition for the original network by projecting and refining
the partitions to successively finer network. Kcut [Ruan and Zhang 2007] combines
the recursive partitioning and direct k-way method based on the eigenvectors of the
Laplacian matrix of a network. Note that, for these four clustering algorithms, every
node in the network belongs to only one community, that is, the communities do not
overlap. SHRINK [Huang et al. 2010] combines the advantages of the density-based
clustering and modularity optimization methods. It uses cosine similarity to calculate
the structural similarity of two adjacent nodes and then hierarchically finds the com-
munity structure. SHRINK adopts the concept of hub nodes in a network (i.e., nodes
connecting to several communities) when finding community structures.

To demonstrate the strength of using H Clustering in the CIM framework, we im-
plement several clustering algorithms, including METIS [Karypis and Kumar 1996],
Kcut [Ruan and Zhang 2007], and SHRINK [Huang et al. 2010], and one agglomerative
clustering algorithm for performance comparison. Note that compared to the clustering
algorithms, that is, METIS, Kcut, and SHRINK, the two agglomerative clustering algo-
rithms presented in Girvan and Newman [2002] and Newman [2004] have the worst ex-
ecution times. In summary, the computation cost of betweenness [Girvan and Newman
2002] and the enumeration for the best join [Newman 2004] are very time consuming.
Thus, we design another agglomerative clustering algorithm, called Agg Clustering,
for further performance comparisons. Specifically, Agg Clustering uses cosine similar-
ity as the similarity measure of two nodes. The same as the aforementioned agglomera-
tive clustering algorithms [Girvan and Newman 2002; Newman 2004], Agg Clustering
merges two nodes (or communities) into one community in each iteration, if they have
the largest similarity in the network. The result is a hierarchical tree. Finally, we
cut the tree at the level that has the largest modularity to produce the community
structure.

We first discuss the efficiency of the proposed H Clustering algorithm. All exper-
iments are conducted using two real datasets: NETHep and Facebook. Figure 15
shows the result in terms of execution time. From the figures, we can observe that
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Fig. 15. The runtime performance of different clustering algorithm on real datasets.

H Clustering incurs the lowest execution time for discovering the community struc-
ture. This is mainly because H Clustering stops when the clustering result is good
enough, without continuing to force naturally homeless nodes (hubs and outliers) into
communities. The hub nodes discovered by H Clustering provide critical position infor-
mation valuable for seed selection in the CIM framework. Although SHRINK can also
discover hub nodes in the network, it spends more time deriving the scores of structure
similarity between nodes. Additionally, instead of only merging the pair of nodes with
the largest similarity, H Clustering groups each pair of nodes into a community if the
structural similarity between these two nodes is the largest among their surrounding
edges from each other. For example, given two nodes u and v, suppose the edge (u, v)
is the largest among all edges connecting to u and is also the largest among all edges
connecting to v, but not the largest edge in the network. Agg Clustering will not merge
u and v into a community. However, H Clustering can merge u and v into a community.
Obviously, the merge strategy of H Clustering can efficiently reduce the processing
iteration of clustering and further improve the runtime performance. This strategy is
very important for hierarchical clustering. From the experiments, H Clustering only
requires 25 and 123 iterations to find the community structure in the NETHep and
Facebook datasets, respectively. However, Agg Clustering needs 193 and 1,107 itera-
tions to discover the community results. This is the main reason why the execution
time of H Clustering outperforms that of Agg Clustering. As shown in Figure 15, the
execution times of H Clustering are 82% and 143% faster than those of Agg Clustering
on the NETHep and Facebook datasets, respectively.

Next, we discuss the effectiveness of the proposed H Clustering algorithm. Notice
that in this article, we are mainly interested in the problem of influence maximization
instead of which clustering algorithm has a better result or precision for community
structure discovering. In other words, we intend to find a clustering algorithm ap-
plicable for the CIM framework to efficiently and effectively address the influence
maximization problem. Now we investigate how the community structures discovered
from different clustering algorithms may affect the influence spread in the CIM frame-
work. We use the discovered results of different algorithms as the output of phase
(i) in CIM (the input of phase (ii) of CIM). Figure 16 depicts the influence spread ob-
tained by using the clustering results of different clustering algorithms on the NETHep
and Facebook datasets, respectively. By increasing the number of seeds from 10 to 30,
Figure 16 shows the information spread obtained with different clustering algorithms.
It is easy to observe that utilizing H Clustering and SHRINK can obtain more influence
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Fig. 16. The affect of influence spread with different clustering algorithm utilized in CIM.

spread over all the other clustering algorithms, owing to the hub nodes discovered from
H Clustering and SHRINK. Nevertheless, it is worth noting that, while H Clustering
and SHRINK algorithms obtain similar influence spread, H Clustering is about 7%-8%
more efficient than SHRINK, as shown in Figure 15. The experiments show that hub
nodes can offer more opportunities to spread influence to other nodes. Furthermore,
the performance of H Clustering is good compared to that of other existing clustering
algorithms. In summary, H Clustering algorithm is a good choice for phase (i) in the
CIM framework.

4.4. The Impact of Selecting Top Significant Communities and Seed Quota-Allocation

Phase (ii) of CIM is to generate candidate seeds. In Section 3.2, we have mentioned that
one naı̈ve approach is to select the centroid nodes of the k-largest communities in the
social network as the k-influential seeds. In phase (ii) of CIM, we judiciously determine
the top significant communities and allocate seed quotas for them. To investigate the
impact of our design in phase (ii) of CIM, we implemented this naı̈ve approach, denoted
as CIM Naı̈ve. All experiments are conducted on the two real datasets: NETHep and
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Fig. 17. The affect of runtime performance of improvement strategy for CIM.

Fig. 18. The affect of influence spread of improvement strategy for CIM.

Facebook. Figures 17 and 18 are the results of varying the number of selected seeds
from 5 to 30.

As shown in Figures 17(a) and 17(b), CIM is able to reduce about 28.4% (respectively,
37.9%) execution time compared with CIM Naı̈ve in NETHep dataset (respectively,
Facebook dataset). Both top significant communities and seed quota-allocation are able
to reduce the search space, thereby reducing runtime. Figures 18(a) and 18(b) show the
impact of the top significant communities and seed quota-allocation in CIM on the in-
fluence spread. As can be seen in Figure 18, the influence spread of CIM Naı̈ve is about
4.1% and 4.6% smaller than CIM in the NETHep dataset and Facebook dataset, respec-
tively. This is due to the fact that seeds in larger communities can have more influence
spreads. These experiments justify our observations in Section 2.2. In other words, the
size of community is a dominant factor for seed placement. The seed quota-allocation
strategy allocates appropriate numbers of seeds for each significant community.

Now we investigate the impact of the setting of parameter p on the results of candi-
date generation. As mentioned in Section 3.2, CIM collects the top-p% of high-degree
nodes and large-score-sum nodes in each significant community of the candidate set.
The setting of parameter p is critical for the runtime performance and the result of in-
fluence spread of CIM. If p is too large, the candidate set will also become too large and
may include many unqualified nodes for seed selection and thus increase the execution
time of CIM. Nevertheless, if p is too small, the candidate set also will become too
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Fig. 19. The influence spread of CIM with varying top-p% nodes in the candidate set.

Fig. 20. The runtime performance of CIM with varying top-p% nodes in the candidate set.

small and may not consist of a sufficient number of qualified nodes for seed selection,
thereby decreasing the influence spread of CIM. Figures 19 and 20 depict the influence
spread and the execution time with varying parameter p on the NETHep and Facebook
datasets of 10 and 30 seeds, respectively. From the observation, as in Figure 19, when
p is larger than about 10%, the influence spread will not increase with enlarging p.
However, on the contrary, as in Figure 20, the execution time is increased when p is
larger than about 10%. Consequently, we can conclude that, in most cases, including
the top-10% of nodes in each significant community in the candidate set is sufficient
to select good seed nodes. Hence, CIM collects the top-10% of nodes in each significant
community to build the candidate set.

5. CONCLUSIONS

In this article, we present a framework, CIM, based on a heat diffusion model by inte-
grating the information of community structure and the seed allocation method. The
goal of this work is to address the efficiency issue of influence maximization problem
while not compromising the quality of influence spread obtained based on the heat
diffusion model. Due to the increasing scale of social networks nowadays, the require-
ment of efficiency on mining algorithms is critical for many applications. We develop
a hierarchical clustering algorithm, H Clustering, to detect the community structure
and hubs of a social graph. CIM utilizes the community structure to effectively reduce
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the overlapping information. We propose two optimization strategies, quota-allocation
and insignificant pruning, to enhance the influence spread and to speed up the exe-
cution time of CIM according to community size. To the best of our knowledge, CIM
is the first algorithm for utilizing community structure to solve the influence maxi-
mization problem. The experimental results on real-world and synthetic datasets show
that our proposed CIM achieves superior performance in terms of running time and
influence spread. As the next step, to better capture the real-world phenomenon, we
plan to consider the influence maximization problem under the context of weighted
graphs. Furthermore, dynamic evolution is also an important property of social net-
works. Static community detection algorithms could only detect community structure
without considering the evolution of social networks. It would be a worthy investigation
to explore dynamic community structures to solve the influence maximization problem.
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